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Mathematical Formulation of the Tropospheric
Delay Covariance for Very Long Baseline
Interferometry Parameter Estimation

Robert Treuhaft∗

ABSTRACT. — This report formulates the tropospheric covariance for Very Long
Baseline Interferometry (VLBI) delay observations. The formulation describes
calculations and data handling in COVTRP.f, the tropospheric covariance principal
routine in MODEST, the Deep Space Network (DSN) VLBI parameter
MODel-and-ESTimation software. The formulation in this report is intended to be an
aid to anyone attempting to understand and/or modify the code. Two applications of
the tropospheric covariance are identified: 1) It facilitates the calculation of the VLBI
parameter-estimate covariance induced by tropospheric fluctuations, and 2) it also
enables optimizing the parameter-estimate errors. It is shown that the formulation of
the tropospheric covariance involves two-dimensional integrals over the structure
function of refractivity (called Dχ). By casting the arguments of Dχ as quadratic
forms and invoking a two-dimensional version of Gauss’s theorem, the double integrals
are reduced to single-dimension, line integrals, realizing an order of magnitude
improvement in computation time. It is further argued that errors of ≈10% arise in
this formulation of the tropospheric delay covariance, and in the COVTRP.f code, due
to a flat-Earth assumption for intermediate-length (≈500 km) baselines. Proposed
simulations are described, which are aimed at evaluating use of the tropospheric
covariance with various wind vectors and saturation scales, as well as the effects of
Earth curvature.
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I. Introduction

The principal observation in Very Long Baseline Interferometry (VLBI) is the
differential delay of extragalactic or spacecraft signals arriving at two Earth-fixed
antennas [1]. The VLBI reference frame is derived by estimating parameters from the
residual differential delays and, to a lesser extent, from the residual delay rates.
Fluctuations in wet path–length refractivity, and therefore in path-length delay, are a
principal error in VLBI parameter estimation [2]. The mathematical formulation of
the tropospheric delay covariance is as calculated in COVTRP.f, a subroutine of
MODEST, the VLBI parameter-estimation code. The calculated covariance is used to
assess parameter errors due to wet tropospheric fluctuations. The covariance is also
used to minimize parameter-estimate error by incorporating it into the estimation
process. The tropospheric covariance was derived for long (> 500 km) baselines in
Equation (13) of Treuhaft and Lanyi [2], referred to as TL13. The derivations in this
report apply to very short baseline lengths and very long baseline lengths. Errors of
≈10% result in applying this formalism and/or code to intermediate baselines
≈500 km due to Earth curvature, as noted in the paragraph following Equation (13).

It is shown that, using quadratic forms and a modified version of Gauss’s theorem,
double integrals of the refractivity structure function in the covariance calculation can
be converted to single integrals, reducing runtime by a factor of ≈10.

The following section shows how the tropospheric covariance can be used to evaluate
VLBI parameter errors in the presence of tropospheric fluctuations. It also shows how
the tropospheric covariance can be used in parameter estimation to derive optimal
parameter estimates. Section III presents a derivation of the tropospheric covariance
for any baseline vector in terms of double integrals of refractivity structure functions,
which depend, in turn, on physical and geometric characteristics of the path delay
(e.g., elevation and azimuth angles). As a prelude to transforming those double
integrals into single integrals, Section IV casts the argument of the refractivity
structure functions as a quadratic form, which is derived from the geometric and
physical structure–function arguments of Section III. Section V describes a method for
reducing those double integrals to single integrals. Section VI enumerates future
studies to assess the use of the covariance.

II. Using the Tropospheric Covariance to Assess and Optimize
Parameter-Estimate Performance

The next subsection shows how the parameter-estimate covariance arises from the
tropospheric delay covariance for an arbitrary analysis mode. The parameter-estimate
covariance is a means to assess the performance of estimated parameters. Subsection
II.B shows how the tropospheric covariance can be used to optimize the analysis mode
and thereby the performance of the parameter estimates.
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A. Assessing Parameter-Estimate Performance by Applying the Tropospheric Covariance to the
Calculation of Parameter-Estimate Covariance

A principal application of the tropospheric covariance is in the calculation of the
parameter-estimate covariance due to tropospheric fluctuations. Below, in referring to
a parameter estimate or observation, “residual” means the estimated or observed
quantity minus a model value. In VLBI, residual parameter P̂i could describe a
baseline component or source coordinate or other geophysical or instrumental
parameter. It is generally assumed that P̂i is linearly related to the difference in
residual propagation delays of the signals received at two stations, as in Equation (1)
below. Let τ1k be the kth residual propagation delay, or pathlength, from the source of
radio emission (natural-extragalactic object or spacecraft) to the receiver at station 1,
and similarly for τ2k at station 2. The VLBI observation (in the absence of error) is
then τ1k − τ2k. The k index usually refers to epoch and/or observation geometry,
including raypath incidence angle and azimuthal angle of the incident raypath with the
baseline vector. Ignoring delay rates, the residual parameter estimate P̂i is given by

P̂i =
nobs∑
k=1

Fik(τ1k − τ2k), (1)

where nobs is the number of (τ1k − τ2k) observations. The matrix Fik is typically
chosen to minimize the sum of squared differences between the parameter estimates
and the true values of the parameters [3], i.e., to minimize

∑
i P̂

2
i . But suboptimal Fik

are also frequently used because models needed for their calculation are imperfect or
the runtime is too long.

The (τ1k − τ2k) observations are sensitive to tropospheric delays not common to
stations 1 and 2. If the model for delays τ1k and τ2k were perfect except for
contributions from tropospheric fluctuations, P̂i would equal zero except for the
fluctuating troposphere contribution. The covariance of P̂i would depend on the
covariance of observed delays τ1k − τ2k. In order to calculate the covariance of P̂i due
to troposheric delay fluctuations, note that the covariance of any two vectors xi, xj is

cov (xi, xj) = 〈xixj〉 − 〈xi〉〈xj〉, (2)

where <> means ensemble average. For the troposphere, an ensemble is a set of
refractivity patterns that can be modeled by Kolmogorov statistics [4]. The covariance
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of P̂i is therefore related to tropospheric delay covariances using Equations (1) and (2):

cov
(
P̂i, P̂j

)
=〈P̂iP̂j〉 − 〈P̂i〉〈P̂j〉

=
∑
k,l

FikFjl〈(τ1k − τ2k)(τ1l − τ2l)〉 −
∑
k,l

FikFjl〈τ1k − τ2k〉〈τ1l − τ2l〉

=
∑
k,l

FikFjl (〈τ1kτ1l〉 − 〈τ1k〉〈τ1l〉+ 〈τ2kτ2l〉 − 〈τ2k〉〈τ2l〉)

−
∑
k,l

FikFjl (〈τ1kτ2l〉 − 〈τ1k〉〈τ2l〉+ 〈τ2kτ1l〉 − 〈τ2k〉〈τ1l〉)

=
∑
k,l

FikFjl (cov (τ1k, τ1l) + cov (τ2k, τ2l)− cov (τ1k, τ2l)− cov (τ2k, τ1l))

(3)

It can be seen that calculation of the parameter covariance is enabled by tropospheric
covariances, such as cov (τ1k, τ1l). The parameter covariance has variances on the
diagonal and correlations in the off-diagonal terms and thus is a good indicator of the
performance of residual parameter estimates. The sum of terms following FikFjl in the
second and third lines of Equation (3), which is equivalent to the sum of terms after
FikFjl in the last line of Equation (3), will be called the “troposphere observation
covariance”:

cov (τ1k − τ2k, τ1l − τ2l) = 〈(τ1k − τ2k)(τ1l − τ2l)〉 − 〈τ1k − τ2k〉〈τ1l − τ2l〉, (4)

which will be used in the next subsection.

Throughout the rest of the report, “type 1” tropospheric covariances will be used to
describe covariances like the first two to the right of the equal sign in the last line of
Equation (3). These covariances are between delays at different times and raypaths
but at the same station. “Type 2” tropospheric covariances are like those to the right
of the minus sign in the last line of Equation (3), with covariances involving stations 1
and 2. Type 2 covariances, which describe station-to-station tropospheric correlations,
were correctly ignored for long baselines in both TL13 and in MODEST, the Deep
Space Network (DSN)–VLBI parameter-estimation algorithm. When stations are far
apart, each delay in 〈τ1kτ2l〉 becomes independent of the other, and the type 2 terms
in the last line of Equation (3) go to zero. Hence, for stations far apart,

cov (τ1k, τ2l) =〈τ1kτ2l〉 − 〈τ1k〉〈τ2l〉 = 〈τ1k〉〈τ2l〉 − 〈τ1k〉〈τ2l〉 = 0. (5)

However, cov (τ1k, τ2l) terms are included for the general covariance of this paper,
expressed in Equation (17), where α and β can be any combination of 1 and 2. The
type 2 terms, important for short baselines, are also included in the Fortran code of
MODEST.

B. Optimizing Parameter-Estimate Performance by Applying the Tropospheric Covariance

The first application of the tropospheric covariance is to determine the parameter
covariance given any Fik’s. As mentioned above, suboptimal Fik’s are sometimes used
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for convenience. The second application of the tropospheric covariance is to find the
optimal Fik’s, Fikopt ’s, which when inserted in Equation (1), produce optimal
parameter residuals P̂iopt that minimize

∑
i P̂

2
iopt

, as mentioned above. The Fikopt ′s
can be gotten from the algorithm that calculates model delays, MODEST, using the
troposphere observation covariance, as in Equation (4). Considering the observation
residual delays to be = 0 except for tropospheric fluctuations, the optimal Fikopt terms
in Equation (1) can be calculated using the inverse of the troposphere observation
covariance, W [3]:

Fikopt =
mparam∑
j=1

(ATWA)−1
ij (ATW )jk, (6)

where Aij is a matrix of partial derivatives of observation i with respect to parameter
j, sometimes called the “design matrix” [5]. It is by using W that optimization of
Fikopt , and thereby of P̂iopt , takes place.

The rest of this report describes the calculation of tropospheric delay covariances, like
those in the last line of Equation (3), in terms of observation geometry and epoch. It
shows that tropospheric covariances are calculated with double integrals over
refractivity structure functions and how those double integrals can be reduced to
single integrals to save time.

III. Tropospheric Covariance in Terms of Refractivity-Structure-Function Integrals

The delay covariances at the bottom of Equation (3) above can be calculated by
expressing delays like τ1k in terms of refractivity along a raypath, ~x1 + ~r1(θ1k, φ1k, z1),
as in Figure 1. For each station location, ~x1 in Figure 1, Earth’s surface will be
considered locally flat: a plane of a few tens of kilometers in extent, perpendicular to
the Earth-radius vector (the local z-axis in Figure 1). In Figure 1, ~r1(θ1k, φ1k, z1)
points from ~x1, at constant polar and azimuthal angles θ1k, φ1k, to a location in space
at those angles, at an altitude z1 above the tangent plane, which is the xy-plane in
Figure 1, with y pointing into the plane of the paper. Ignoring bending, for time = 0,
and the tropospheric refractivity at any arbitrary point ~x to be χ(~x), a height
increment dz1 leads to a path increment dz1/ sin θ1k, as in Figure 2. This path
increment dz1/ sin θ1k in turn produces a path delay increment

dτ1k(θ1k, φ1k) = dz1/ sin θ1kχ(~x1 + ~r1(θ1k, φ1k, z1)),

as in the first line of Equation (7) below.

The delay τ1k for insertion into terms like those at the bottom of Equation (3) is the
integral of dτ1k:

τ1k(θ1k, φ1k, tk) = 1
sin θ1k

∫ h

0
dz1 χ(~x1 + ~r1(θ1k, φ1k, z1)− ~v1tk), (7)
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where

~r1(θ1k, φ1k, z1) =(r1 cos θ1k cosφ1k, r1 cos θ1k sinφ1k, r1 sin θ1k)

=(z1 cot θ1k cosφ1k, z1 cot θ1k sinφ1k, z1),

and, with fixed θ1k and φ1k, the raypath for the kth observation can be generated by
stepping along values of ~r1 at values of z1 above the tangent plane, ignoring bending.

In Equation (7), h is the wet tropospheric height, ~v1 is the wind velocity at station 1,
and tk is the time of the kth observation, where it is understood that
χ = χ(~x1 + ~r1(θ1k, φ1k, z1)) when tk = 0.

Figure 1. For a given height, z1, above the (xy) tangent plane defined as perpendicular to the
Earth-radius vector (the z-axis) at the station location (~x1), the position at which refractivity is

evaluated, at time = 0, is at ~x1 + ~r(θ1k, φ1k, z1), for the kth observation.

Inserting τ1k and τ1l, derived from the first line of Equation (7), in place of xi and xj

in Equation (2) yields, for example, cov(τ1k, τ1l), a station-1, type-1 covariance:

cov (τ1k, τ1l) = 1
sin θ1k sin θ1l

∫ h

0

∫ h

0
dz1 dz

′
1 [A−B] (8)

where

A =〈χ(~x1 + ~r1(θ1k, φ1k, z1)− ~v1tk)χ(~x1 + ~r1(θ1l, φ1l, z
′
1)− ~v1tl)〉

B =〈χ(~x1 + ~r1(θ1k, φ1k, z1)− ~v1tk)〉〈χ(~x1 + ~r1(θ1l, φ1l, z1)− ~v1tl)〉.

Assuming the mean square value of refractivity, 〈χ2〉, does not vary with location in
the troposphere (homogeneous assumption), TLA3 demonstrates that the
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Figure 2. For a given height increment dz1, the path increments by dz1/sinθ1k, for the kth observation.

ensemble-averaged product of refractivity at different locations ~m1 and ~m2 can be
related to the refractivity structure function:

〈χ(~m1)χ(~m2)〉 = 〈χ2〉 − 1
2
Dχ(|~m1 − ~m2|2), (9)

where the structure function, Dχ(|~m1 − ~m2|2) ≡ 〈(χ(~m1)− χ(~m2))2〉 and, from TL19,
is given by

Dχ(R) = C2R2/3

1 + (R/L)2/3 , (10)

with C being a normalization constant and L a saturation scale length, usually taken
to be a few 1000 km. Using Equation (9) for the refractivity products in Equation (8),
the covariance in Equation (8) becomes

cov (τ1k, τ1l) = 1
sin θ1k sin θ1l

[
〈χ2〉h2 − 1

2

∫ h

0

∫ h

0
dz1 dz

′
1Dχ(|~R1kl|2)− 〈χ〉2h2

]

= 1
sin θ1k sin θ1l

[
h2σ2

χ −
1
2

∫ h

0

∫ h

0
dz1 dz

′
1Dχ(|~R1kl|2)

]
,

(11)

where

~R1kl =~r1(θ1k, φ1k, z1)− ~r1(θ1l, φ1l, z
′
1)− ~v1(tk − tl)

and σ2
χ ≡ 〈χ2〉 − 〈χ〉2 is assumed independent of the coordinates of the raypaths in

Figures 1 or 2.
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Putting ~r1 from the third line of Equation (7) into Equation (16):

|~R1kl|2 =(z1 cot θ1k cosφ1k − z′1 cot θ1l cosφ1l − v1(tk − tl))2

+ (z1 cot θ1k sinφ1k − z′1 cot θ1l sinφ1l)2

+ (z1 − z′1)2,

(12)

where the velocity of the wind is taken to lie along the x-axis.

The expression for the type 2 tropospheric covariance, cov (τ1k, τ2l), needed for smaller
baseline lengths, is derived by inserting τ2l in place of xj in Equation (2). The station
2 delay, τ2l, is derived from the first line of Equation (7), with 1→ 2 and k → l. The
wind vector is taken to be the same at each station and along the x-axis,
~v1 = ~v2 ≡ ~v = (vx, 0, 0):

cov (τ1k, τ2l) = 1
sin θ1k sin θ2l

[
h2σ2

χ −
1
2

∫ h

0

∫ h

0
dz1 dz

′
2Dχ(|~R12|2)

]
(13)

where

|~R12|2 =|(~x1 + ~r1)− (~x2 + ~r2)− ~v(tk − tl)|2

=Bx + z1 cot θ1k cosφ1k − z′2 cot θ2l cosφ2l − vx(tk − tl)2

+ (z1 cot θ1k sinφ1k − z′2 cot θ2l sinφ2l)2

+ (z1 − z′2)2

where ~B ≡ ~x1 − ~x2 is the baseline vector, and on the fourth line of Equation (13) is
taken to lie along the x-axis with component Bx.

Note that the second line of Equation (13) assumes a very short baseline, by applying
Equation (7) to get τ2l for insertion into Equation (2). For short baselines or a flat
Earth, the orientation of the tangent plane (or zenith) at each station is nearly
identical to that at the other. For intermediate (≈500 km) baselines and a spherical
Earth, the orientation of tangent planes, and therefore zenith directions, can be up to
a few degrees different between stations. These differences can introduce errors into
type 2 covariances treated as in Equation (13). For very long baselines > 1000 km,
Equation (5) holds and cov(τ1k, τ2l) = 0 and errors due to large differences in tangent
plane orientations do not matter. In future versions of the mathematical formulation
of the covariance, and of the code, all z′2, θ2l, and φ2l coordinates must be transformed
to the same coordinate system in which z1, θ1k, and φ1k are expressed, before deriving
expressions like Equation (13).

For now, the order of the error incurred in the code using the tropospheric covariance
for intermediate baselines of ≈500 km is estimated to be about 10% (≈500 km/Earth
Radius). A careful error analysis of the flat-Earth assumption in type 2 covariances as
a function of baseline length will be investigated by simulations as suggested in
Section VI. These simulations should prompt the transformations of coordinates to the
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same reference frame, as mentioned above. It should also be noted that because
current DSN baseline lengths are more than an Earth radius or less than 10 km, the
“Earth-curvature” error will not have a big effect on the calculated tropospheric delay
covariance, it is not treated in the code, and the formulation in this report will
continue without modelling Earth curvature.

In the general case with the baseline vector ~B ≡ (Bx, By, Bz) and the wind velocity
vector ~v = (vx, vy, vz) (assumed the same at each station), Equation (13) becomes

cov(τ1k, τ2l) = 1
sin θ1k sin θ2l

[
h2σ2

χ −
1
2

∫ h

0

∫ h

0
dz1 dz

′
2Dχ[(Bx − vx(tk − tl)

+ z1 cot θ1k cosφ1k − z′2 cot θ2l cosφ2l)2

+ (By − vy(tk − tl) + z1 cot θ1k sinφ1k − z′2 cot θ2l sinφ2l)2

+ (Bz − vz(tk − tl) + z1 − z′2)2)]
]
. (14)

Note that formally, a vertical z component of wind velocity is included, but lateral
(x-y) wind vectors are most often considered.

The following, more general expression for the tropospheric covariance can be applied
to produce type 1 and type 2 covariances. It is derived by letting the station indices in
Equation (14) be general, and it facilitates comparison with the code:

cov(τα,k, τβ,l) = 1
sin θα,k sin θβ,l

[
h2σ2

χ −
1
2

∫ h

0

∫ h

0
dzα dz

′
βDχ[(Bx − vx(tk − tl)

+ zα cot θα,k cosφα,k − z′β cot θβ,l cosφβ,l)2

+ (By − vy(tk − tl) + zα cot θα,k sinφα,k − z′β cot θβ,l sinφβ,l)2

+ (Bz − vz(tk − tl) + zα − z′β)2)]
]
, (15)

where α and β are the station indices and take on the values of 1 or 2. Written
explicitly, zα and z′β are the z-coordinates of the raypaths above station α and station
β, respectively. Note that the first two terms in the argument of Dχ, for each
component of ~B and ~v, do not depend on the geometric properties of the raypaths,
neither the angular coordinates of the observation, nor the zα or z′β coordinates of the
first or second raypath in the covariance calculation. These terms simply depend on
ground-based differential descriptors such as baseline vector and differential
observation epoch. For this reason, and to better understand the code, the vector ~ρ0 is
defined as

~ρ0 ≡ ~B − ~vαtk + ~vβtl, (16)

where the velocity vector is allowed to be different at stations α and β. With
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Equation (16), Equation (15) becomes

cov(τα,k, τβ,l) = 1
sin θα,k sin θβ,l

[
h2σ2

χ −
1
2

∫ h

0

∫ h

0
dzα dz

′
βDχ[(ρ0x

+ zα cot θα,k cosφα,k − z′β cot θβ,l cosφβ,l)2

+ (ρ0y + zα cot θα,k sinφα,k − z′β cot θβ,l sinφβ,l)2

+ (ρ0z + zα − z′β)2]
]

= 1
sin θα,k sin θβ,l

{
h2σ2

χ −
1
2

∫ h

0

∫ h

0
dzα dz

′
βDχ

[
ρ2

0

+ z2
α

sin2 θαk
+

z
′2
β

sin2 θβl
+ 2zα~ρ0 · êαk

sin θαk
−

2z′β~ρ0 · êβl
sin θβl

−
2zαz′β êαk · êβl
sin θαk sin θβl

]}
(17)

where êαk ≡ (cos θαk cosφ1k, cos θαk sinφαk, sin θαk)
êβl ≡ (cos θβl cosφβl, cos θβl sinφβl, sin θβl)

IV. Arguments of the Refractivity Structure Functions as Quadratic Forms

The process of reducing the double integral of Equation (17) to a single integral
involves finding a function that has a divergence equal to Dχ. Finding this function as
a simple integral of Dχ, as in Equation (35), is facilitated by expressing the argument
of Dχ in Equation (17) as a quadratic form, Q(x, y), with x ≡ zα and y ≡ z′β . Q is
equated to the argument of Dχ in Equation (17) as

Q(x, y) ≡ ρ2
0 + x2

sin2 θαk
+ y2

sin2 θβl
+ 2x~ρ0 · êαk

sin θαk
− 2y~ρ0 · êβl

sin θβl
− 2xyêαk · êβl

sin θαk sin θβl

= ρ2
0 + x2

sin2 θαk
+ y2

sin2 θβl
+ 2~b · ~x− 2xyêαk · êβl

sin θαk sin θβl
, (18)

where

~x ≡

[
x

y

]
and ~b ≡

[
bx

by

]
≡


êαk·~ρ0
sin θαk

−êβl·~ρ0
sin θβl

.


Q is further equated to the general expression for a quadratic form as

Q = (~x− ~µ)TΓ(~x− ~µ) +Q0

=
[
(x− µx) (y − µy)

] [Γ11 Γ12

Γ21 Γ22

][
x− µx
y − µy

]
+Q0 (19)

and we want to find Γ, µx, µy, and Q0 that make Equation (19) equivalent to
Equation (18). It will be seen that derivatives of Q with respect to x and y as in
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Equation (19) are simple and needed to convert the double integrals of Equation (17)
to single integrals.

In order to find the matrix Γ, the vector ~µ, and the scalar Q0, which make
Equation (19) account for all the terms in Equation (18), expand the right side of
Equation (19) as

Q = Γ11x
2 − 2Γ11µxx+ Γ11µ

2
x + Γ12xy − Γ12µyx+ Γ12µxµy − Γ12yµx

+ Γ21yx+ Γ21µxµy − Γ21xµy − Γ21yµx + Γ22y
2 − 2Γ22µyy + Γ22µ

2
y +Q0.(20)

In Equations (21), (22), and (23), Γ, µ, and Q0 in Equation (20) are specified in terms
of the physical arguments of Dχ in Equation (18). In order to find Γ, note like terms
in Equations (20) and (18), and equate their coefficients. For example, the coefficient
of x2 in Equation (18) is 1/ sin2 θαk, and in Equation (20) the coefficient of x2 is Γ11.
Therefore, equating coefficients of x2, y2, and xy in Equations (18) and (20) yields

Γ11 = 1
sin2 θαk

Γ22 = 1
sin2 θβl

Γ12 = Γ21 = −êαk · êβl
sin θαk sin θβl

. (21)

Noting that ~b · ~x = bxx+ byy and equating the coefficients of x and y in Equations (18)
and (20) yields

2bx = −2Γ11µx − Γ12µy − Γ21µy = −2Γ11µx − 2Γ12µy

2by = −2Γ12µx − 2Γ22µy

=⇒ ~b = −Γ~µ or ~µ = −Γ−1~b. (22)

Note that Equation (22) shows that the ~µ term is needed in the quadratic form
because of the ~b term in Equation (18), which is, in turn, needed because of the linear
~x term in Equation (18).

Having specified Γ and µ in terms of the physical expression for Q in Equation (18),
Q0 is specified by equating Equations (18) and (20) after setting x and y = 0 in both
equations:

ρ2
0 = Γ11µ

2
x + Γ12µxµy + Γ21µxµy + Γ22µ

2
y +Q0

Q0 = ρ2
0 − ~µTΓ~µ = ρ2

0 −~bTΓ−1~b. (23)

Table 1 summarizes Equations (21), (22), and (23), expressing quadratic form
quantities in terms of geometric quantities of Equations (17) and (18) in the argument
of the refractivity structure function, Dχ.

V. Transforming the 2D Refractivity Integral to 1D

This section derives the transformation from a 2-D integral like that in Equation (17)
to a 1D integral, as outlined by an informal memo by Mark Finger in 1988 [7].
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Table 1. Summary of Equations (21), (22), and (23).

(21) Γ =

 1
sin2 θαk

−êαk·êβl
sin θαk sin θβl

−êαk·êβl
sin θαk sin θβl

1
sin2 θβl


(22) ~µ = −Γ−1~b

(23) Q0 = ρ2
0 −~bTΓ−1~b

A. From 2D Integral to 1D for a General Function ~f

This treatment, which fills in the details of MF88, starts by rewriting the argument of
the refractivity structure function in the integral in Equation (17) in terms of Q as in
Equation (19):

Integral =
∫ h

0

∫ h

0
Dχ(Q(x, y))dxdy (24)

The method for demonstrating the general 2D to 1D integral is based on Gauss’s
theorem for transforming 3D to 2D integrals [6]. The demonstration of that
transformation starts with an infinitesimal, rectangular volume, with normals pointing
outward from each surface. But instead of a 3D infinitesimal volume, we start with a
2D infinitesimal surface, with rectangular sides of length ∆x and ∆y, and calculate
the dot product of an arbitrary vector function ~f , with outward normals to each linear
segment of the rectangle, and their derivatives. The dot product is then multiplied by
the length of the corresponding linear segment. Ultimately, we want to show that the
sum of those dot-product expressions over the four lines of the rectangle in Figure 3 is
equal to the divergence of the function times the infinitesimal area of the surface.

Figure 3 shows rectangle i, with midpoints of sides one through four, ~Pi,1−4, and
corner reference point ~Pi0 .

The dot-product expressions of ~f(~Pi,j) · n̂i,jdψi,j are summed over the four sides of
rectangle i:

Infinitesimal linear sum of dot products at ~Pi,0 =
∑
j=1,4

n̂i,j · ~f(~Pi,j)dψi,j , (25)

where dψi,j is a positive pathlength on the jth side of rectanglei, with value either ∆x
or ∆y (independent of i). The side j = 1 term of the sum in Equation (25), with
n̂i,1 = −x̂, is therefore:

−x̂ · ~f
(
x, y + ∆y

2

)
∆y =− x̂ ·

[
~f(x, y) + d~f(~Pi,0)

dy

∆y
2

]
∆y

≡

[
−fx(~Pi,0)− dfx(~Pi,0)

dy

∆y
2

]
∆y. (26)
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Figure 3. The ith infinitesimal rectangle, with origin (corner) at ~Pi,0. This rectangle, with side lengths
of ∆x and ∆y, both positive, is the path along which the sum in Equation (25) is taken of the function

~f dotted into the normals shown. This sum is shown below to be equal to the two-dimensional
divergence of ~f , multiplied by the infinitesimal area ∆x∆y.

In a similar way, suppressing the “~Pi,0” term and ignoring second-order derivatives like
d2fx
dxdy , side j = 2 of the sum is[

fx + dfx
dy

∆y
2

+ dfx
dx

∆x
]

∆y, (27)

side j = 3 of the sum is [
−fy −

dfy
dx

∆x
2

]
∆x, (28)

and side j = 4 of the sum is [
fy + dfy

dx

∆x
2

+ dfy
dy

∆y
]

∆x. (29)

Adding Equations (26) through (29) shows that infinitesimal linear sum i with corner
~Pi,0 is ∑

j=1,4
n̂i,j · ~f(~Pi,j)dψi,j =

[
dfx
dx

+ dfy
dy

]
∆x∆y ≡ ~∇2 · ~f(~Pi,0)dxdy, (30)

where ~∇2 is the two-dimensional divergence defined by Equation (30), and
dxdy = lim ∆x∆y as they both tend toward zero.

In order to demonstrate that the double integral in Equation (24) can be expressed as
four single-dimensional integrals, Equation (31) starts with Equation (24) and uses
Equation (30) to sum infinitesimal rectangles, indexed by i, on both sides of
Equation (30).

∫ ∫
~∇2 · ~f dxdy =

∑
i

~∇2 · ~f(~Pi,0)dxdy =
∑
i

4∑
j=1

n̂i,j(~Pi,j) · ~f(~Pi,j)dψi,j

13



=
∑4
j=1

∑
i n̂i,j(~Pi,j) ·~f(~Pi,j)dψi,j =

4∑
j=1

∫
n̂(x, y) · ~f(x, y)dl (31)

The order of the i and j sum in the second line has been interchanged. The i sum
following the j sum in the beginning of the second line of Equation (31) has been
converted to an integral on the right side of the second line in Equation (31). A
uniform, positive length of each small rectangle, dl replaces dψi,j , and the dependence
of f on (x, y) anticipates the expression for ~f(x, y) in Equation (33). Integrating over i
first leads to four terms in the second line of Equation (31), which constitute four line
integrals to be used in the analysis in Equation (32). Note that interior rectangles in
Figure 4 do not contribute to the line integrals because adjacent normals point in
opposite directions. Therefore, only the external perimeter enclosed in dark blue lines
in Figure 4 contributes to the second line of Equation (31), creating a macroscopic
rectangle over which to integrate dot products as in Equation (32).

Figure 4. The macroscopic rectangle, with side lengths of h, is the path along which the line integral is
taken of the function ~f dotted into the normals shown. This line integral along the four sides of the

rectangle is shown to be equal to the two-dimensional divergence of ~f in Equation (31).

Expressing the normals in terms of rectangular coordinates (for example, n̂1 = −ŷ),
and referring to Figure 4, the four integrals in the second line of Equation (31) become∫ h

0

∫ h

0
Dχ(Q)dxdy =

∫ h

0
(−ŷ) · ~f(l, 0)dl

+
∫ h

0
(x̂) · ~f(h, l)dl +

∫ h

0
(ŷ) · ~f(l, h)dl −

∫ h

0
(x̂) · ~f(0, l)dl,

(32)

where l is the path length of the outward sides of infinitesimal rectangles (in Figure 4).

B. Finding the Function ~f such that ~∇2 · ~f = Dχ

In order to find a function ~f such that ~∇2 · ~f = Dχ(Q) as in Equation (31) and carry
out the four 1D integrals in Equation (32), we follow the proposal in MF88 that ~f take

14



the form

~f(x, y) = (~x− ~µ)G(Q) (33)

with Q, ~x, and ~µ as in Equation (19) and where the correspondence between Γ, µ, Q0,
and the terms in Equation (18) is in Table 1. With ~f as in Equation (33), the
two-dimensional divergence of ~f can be taken and set equal to Dχ(Q) to find G(Q).

Dχ(Q) = ~∇2 · ~f(x, y) = ~∇2 · (~x− ~µ)G(Q)

= dfx
dx

+ dfy
dy

= 2G(Q) + (x− µx)∂G(Q)
∂x

+ (y − µy)∂G(Q)
∂y

= 2G(Q) + 2∂G(Q)
∂Q

(Q−Q0)

= 2 ∂

∂Q
[(Q−Q0)G(Q)] (34)

which is Equation (5) in MF88. In the third line of Equation (34), ∂G(Q)/∂x is
calculated as ∂G(Q)

∂Q
∂Q
∂x , using Equation (20).

That Equation (34) is a simple derivative with respect to Q is the advantage of
expressing the formulation in terms of a quadratic form. The expression for the
divergence of ~f can be integrated to find G(Q) in terms of Dχ(Q):

G(Q) = 1
2(Q−Q0)

∫ Q

Q0

Dχ(Q)dQ (35)

From Equation (10), Dχ can be expressed in terms of Q = R2:

Dχ(R) = C2R2/3

1 + (RL )2/3 = C2Q1/3

1 + ( QL2 )1/3
= Dχ(Q) (36)

Following MF88, substituting Equation (36) into Equation (35) and setting Q = L2u3,
u = (Q/L2)1/3, and dQ = 3L2u2du:

2(Q−Q0)G(Q) = 3L8/3C2
∫ ( Q

L2 )1/3

(Q0
L2 )1/3

u3

1 + u
du (37)

The integral in Equation (37) can be done by dividing the denominator into the
numerator, yielding

2(Q−Q0)G(Q) = 3L8/3C2
∫ ( Q

L2 )1/3

(Q0
L2 )1/3

u2 − u+ 1− 1
1 + u

du, (38)

which yields an expression for G(Q):

G(Q) = 3L8/3C2

2(Q−Q0)

[
u3

3
− u2

2
+ u− ln(1 + u)

]
|
( Q
L2 )1/3

(Q0
L2 )1/3 . (39)
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Having an expression for G(Q), we can now formally substitute the expression for ~f of
Equation (33) into the four lines of Equation (32):∫ h

0

∫ h

0
Dχ(Q)dxdy =

∫ h

0
(−ŷ) · (~x− ~µ)G(Q(l, 0))dl +

∫ h

0
(x̂) · (~x− ~µ)G(Q(h, l))dl

+
∫ h

0
(ŷ) · (~x− ~µ)G(Q(l, h))dl −

∫ h

0
(x̂) · (~x− ~µ)G(Q(0, l))dl

=
∫ h

0
µyG(Q(l, 0))dl +

∫ h

0
(h− µx)G(Q(h, l))dl

+
∫ h

0
(h− µy)G(Q(l, h))dl +

∫ h

0
µxG(Q(0, l))dl

(40)

C. Summary of the Mathematical Formulation of the Tropospheric Covariance for VLBI Parameter
Estimation

Tropospheric covariances are used 1) to evaluate the parameter estimate covariance
due to tropospheric fluctuations (Equation [3]) and 2) to optimize the VLBI residual
parameter estimates (Equation [6]). P̂i are expressed in terms of tropospheric
propagation delays in Equation (1). The tropospheric delay as a function of
refractivity distribution, geometric paramters, and time is in Equation (7). The
tropospheric covariance calculated from expressions of tropospheric delays is shown to
depend on time-consuming double integrals of the refractivity structure function over
the vertical path-length coordinate at each VLBI station, as in Equation (17).

Table 2 summarizes the calculational steps to perform four single integrals in place of
the one double integral in Equation (17).

Table 2. Steps to perform four single integrals.

Step Description Equation/Location

1 Express geometric path-delay arguments of Dχ as a
function of a quadratic form Q

(18)

2 Solve for Q parameters Γ, µ, and Q0 in terms of
parameters in Equation (18)

Table 1

3 Propose a candidate function, ~f , the 2D divergence
of which is Dχ

(33)

4 Take the divergence and solve for the key expression,
G(Q), in ~f

(34), (35)

5 Express double integral over Dχ as four single inte-
grals over G(Q)

(40)
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VI. Future Studies to Assess Errors in the Use of the Covariance

The tropospheric covariance of Equation (3), via the various terms in Equation (17),
involves parameters of wind speed and direction at each station. The wind vector may,
in general, not be known to great accuracy. In order to assess the error introduced by
having errors in the wind-vector terms, the tropospheric covariance matrix can be
used to simulate tropospheric delays characterized by a range of wind vectors at each
station. The simulation can be done by taking the square root of the covariance
matrix and using it to transform white noise–simulated observations into observations
with the tropospheric covariance [8].

The saturation scale should be tested in the same way, by generating tropospheric
delays with a given saturation scale, and finding parameter covariances using
saturation scales that differ from those in the simulated data.

Additional simulations of DSN-VLBI with non-parallel local verticals, and with a
range of baseline lengths, will determine magnitude of the error in the covariance and
consequent parameter estimates due to the flat-Earth assumption.
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